XLM-RoBERTa-XL
This model was released on 2021-05-02 and added to Hugging Face Transformers on 2022-01-29.
XLM-RoBERTa-XL
Section titled “XLM-RoBERTa-XL”XLM-RoBERTa-XL is a 3.5B parameter multilingual masked language model pretrained on 100 languages. It shows that by scaling model capacity, multilingual models demonstrates strong performance on high-resource languages and can even zero-shot low-resource languages.
You can find all the original XLM-RoBERTa-XL checkpoints under the AI at Meta organization.
The example below demonstrates how to predict the <mask> token with Pipeline, AutoModel, and from the command line.
import torchfrom transformers import pipeline
pipeline = pipeline( task="fill-mask", model="facebook/xlm-roberta-xl", dtype=torch.float16, device=0)pipeline("Bonjour, je suis un modèle <mask>.")import torchfrom transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained( "facebook/xlm-roberta-xl",)model = AutoModelForMaskedLM.from_pretrained( "facebook/xlm-roberta-xl", dtype=torch.float16, device_map="auto", attn_implementation="sdpa")inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to(model.device)
with torch.no_grad(): outputs = model(**inputs) predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]predicted_token_id = predictions[0, masked_index].argmax(dim=-1)predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")echo -e "Plants create <mask> through a process known as photosynthesis." | transformers run --task fill-mask --model facebook/xlm-roberta-xl --device 0Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses torchao to only quantize the weights to int4.
import torchfrom transformers import AutoModelForMaskedLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)tokenizer = AutoTokenizer.from_pretrained( "facebook/xlm-roberta-xl",)model = AutoModelForMaskedLM.from_pretrained( "facebook/xlm-roberta-xl", dtype=torch.float16, device_map="auto", attn_implementation="sdpa", quantization_config=quantization_config)inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to(model.device)
with torch.no_grad(): outputs = model(**inputs) predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]predicted_token_id = predictions[0, masked_index].argmax(dim=-1)predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")- Unlike some XLM models, XLM-RoBERTa-XL doesn’t require
langtensors to understand which language is used. It automatically determines the language from the input ids.
XLMRobertaXLConfig
Section titled “XLMRobertaXLConfig”[[autodoc]] XLMRobertaXLConfig
XLMRobertaXLModel
Section titled “XLMRobertaXLModel”[[autodoc]] XLMRobertaXLModel - forward
XLMRobertaXLForCausalLM
Section titled “XLMRobertaXLForCausalLM”[[autodoc]] XLMRobertaXLForCausalLM - forward
XLMRobertaXLForMaskedLM
Section titled “XLMRobertaXLForMaskedLM”[[autodoc]] XLMRobertaXLForMaskedLM - forward
XLMRobertaXLForSequenceClassification
Section titled “XLMRobertaXLForSequenceClassification”[[autodoc]] XLMRobertaXLForSequenceClassification - forward
XLMRobertaXLForMultipleChoice
Section titled “XLMRobertaXLForMultipleChoice”[[autodoc]] XLMRobertaXLForMultipleChoice - forward
XLMRobertaXLForTokenClassification
Section titled “XLMRobertaXLForTokenClassification”[[autodoc]] XLMRobertaXLForTokenClassification - forward
XLMRobertaXLForQuestionAnswering
Section titled “XLMRobertaXLForQuestionAnswering”[[autodoc]] XLMRobertaXLForQuestionAnswering - forward