Skip to content

XLM-RoBERTa-XL

This model was released on 2021-05-02 and added to Hugging Face Transformers on 2022-01-29.

PyTorch SDPA

XLM-RoBERTa-XL is a 3.5B parameter multilingual masked language model pretrained on 100 languages. It shows that by scaling model capacity, multilingual models demonstrates strong performance on high-resource languages and can even zero-shot low-resource languages.

You can find all the original XLM-RoBERTa-XL checkpoints under the AI at Meta organization.

The example below demonstrates how to predict the <mask> token with Pipeline, AutoModel, and from the command line.

import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="facebook/xlm-roberta-xl",
dtype=torch.float16,
device=0
)
pipeline("Bonjour, je suis un modèle <mask>.")
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"facebook/xlm-roberta-xl",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/xlm-roberta-xl",
dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
Terminal window
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers run --task fill-mask --model facebook/xlm-roberta-xl --device 0

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses torchao to only quantize the weights to int4.

import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained(
"facebook/xlm-roberta-xl",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/xlm-roberta-xl",
dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa",
quantization_config=quantization_config
)
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
  • Unlike some XLM models, XLM-RoBERTa-XL doesn’t require lang tensors to understand which language is used. It automatically determines the language from the input ids.

[[autodoc]] XLMRobertaXLConfig

[[autodoc]] XLMRobertaXLModel - forward

[[autodoc]] XLMRobertaXLForCausalLM - forward

[[autodoc]] XLMRobertaXLForMaskedLM - forward

[[autodoc]] XLMRobertaXLForSequenceClassification - forward

[[autodoc]] XLMRobertaXLForMultipleChoice - forward

[[autodoc]] XLMRobertaXLForTokenClassification - forward

[[autodoc]] XLMRobertaXLForQuestionAnswering - forward