Skip to content

Voxtral

This model was released on 2025-07-15 and added to Hugging Face Transformers on 2025-07-18.

Voxtral is an upgrade of Ministral 3B and Mistral Small 3B, extending its language capabilities with audio input support. It is designed to handle tasks such as speech transcription, translation, and audio understanding.

You can read more in Mistral’s release blog post.

The model is available in two checkpoints:

Voxtral builds on Ministral-3B by adding audio processing capabilities:

  • Transcription mode: Includes a dedicated mode for speech transcription. By default, Voxtral detects the spoken language and transcribes it accordingly.
  • Long-form context: With a 32k token context window, Voxtral can process up to 30 minutes of audio for transcription or 40 minutes for broader audio understanding.
  • Integrated Q&A and summarization: Supports querying audio directly and producing structured summaries without relying on separate ASR and language models.
  • Multilingual support: Automatically detects language and performs well across several widely spoken languages, including English, Spanish, French, Portuguese, Hindi, German, Dutch, and Italian.
  • Function calling via voice: Can trigger functions or workflows directly from spoken input based on detected user intent.
  • Text capabilities: Maintains the strong text processing performance of its Ministral-3B foundation.

The model supports audio-text instructions, including multi-turn and multi-audio interactions, all processed in batches.

➡️ audio + text instruction

import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
device = Accelerator().device
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, dtype=torch.bfloat16, device_map=device)
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"url": "https://huggingface.co/datasets/eustlb/audio-samples/resolve/main/dude_where_is_my_car.wav",
},
{"type": "text", "text": "What can you tell me about this audio?"},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)

➡️ multi-audio + text instruction

import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
device = Accelerator().device
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, dtype=torch.bfloat16, device_map=device)
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
},
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
},
{"type": "text", "text": "What sport and what nursery rhyme are referenced?"},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)

➡️ multi-turn:

import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
device = Accelerator().device
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, dtype=torch.bfloat16, device_map=device)
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
},
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
},
{"type": "text", "text": "Describe briefly what you can hear."},
],
},
{
"role": "assistant",
"content": "The audio begins with the speaker delivering a farewell address in Chicago, reflecting on his eight years as president and expressing gratitude to the American people. The audio then transitions to a weather report, stating that it was 35 degrees in Barcelona the previous day, but the temperature would drop to minus 20 degrees the following day.",
},
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav",
},
{"type": "text", "text": "Ok, now compare this new audio with the previous one."},
],
},
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)

➡️ text only:

import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
device = Accelerator().device
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, dtype=torch.bfloat16, device_map=device)
conversation = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What if a cyber brain could possibly generate its own ghost, and create a soul all by itself?",
},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)

➡️ audio only:

import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
device = Accelerator().device
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, dtype=torch.bfloat16, device_map=device)
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/dude_where_is_my_car.wav",
},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)

➡️ batched inference!

import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
device = Accelerator().device
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, dtype=torch.bfloat16, device_map=device)
conversations = [
[
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
},
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
},
{
"type": "text",
"text": "Who's speaking in the speach and what city's weather is being discussed?",
},
],
}
],
[
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
},
{"type": "text", "text": "What can you tell me about this audio?"},
],
}
],
]
inputs = processor.apply_chat_template(conversations)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated responses:")
print("=" * 80)
for decoded_output in decoded_outputs:
print(decoded_output)
print("=" * 80)

Use the model to transcribe audio (state-of-the-art performance in English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)! It also support automatic language detection.

import torch
from transformers import VoxtralForConditionalGeneration, AutoProcessor
from accelerate import Accelerator
device = Accelerator().device
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, dtype=torch.bfloat16, device_map=device)
# set the language is already know for better accuracy
inputs = processor.apply_transcription_request(language="en", audio="https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3", model_id=repo_id)
# # but you can also let the model detect the language automatically
# inputs = processor.apply_transcription_request(audio="https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3", model_id=repo_id)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated responses:")
print("=" * 80)
for decoded_output in decoded_outputs:
print(decoded_output)
print("=" * 80)

This model was contributed by Eustache Le Bihan.

[[autodoc]] VoxtralConfig

[[autodoc]] VoxtralEncoderConfig

[[autodoc]] VoxtralProcessor

[[autodoc]] VoxtralEncoder - forward

[[autodoc]] VoxtralForConditionalGeneration - forward