TimmWrapper
Overview
Section titled “Overview”Helper class to enable loading timm models to be used with the transformers library and its autoclasses.
>>> import torch>>> from PIL import Image>>> from urllib.request import urlopen>>> from transformers import AutoModelForImageClassification, AutoImageProcessor
>>> # Load image>>> image = Image.open(urlopen(... 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'... ))
>>> # Load model and image processor>>> checkpoint = "timm/resnet50.a1_in1k">>> image_processor = AutoImageProcessor.from_pretrained(checkpoint)>>> model = AutoModelForImageClassification.from_pretrained(checkpoint).eval()
>>> # Preprocess image>>> inputs = image_processor(image)
>>> # Forward pass>>> with torch.no_grad():... logits = model(**inputs).logits
>>> # Get top 5 predictions>>> top5_probabilities, top5_class_indices = torch.topk(logits.softmax(dim=1) * 100, k=5)Resources
Section titled “Resources”A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with TimmWrapper.
TimmWrapperConfig
Section titled “TimmWrapperConfig”[[autodoc]] TimmWrapperConfig
TimmWrapperImageProcessor
Section titled “TimmWrapperImageProcessor”[[autodoc]] TimmWrapperImageProcessor - preprocess
TimmWrapperModel
Section titled “TimmWrapperModel”[[autodoc]] TimmWrapperModel - forward
TimmWrapperForImageClassification
Section titled “TimmWrapperForImageClassification”[[autodoc]] TimmWrapperForImageClassification - forward