Skip to content

T5Gemma 2

This model was released on {release_date} and added to Hugging Face Transformers on 2025-12-01.

PyTorch FlashAttention SDPA

T5Gemma 2 is a family of pretrained encoder-decoder large language models with strong multilingual, multimodal and long-context capability, available in 270M-270M, 1B-1B and 4B-4B parameters. Following T5Gemma, it is built via model adaptation (based on Gemma 3) using UL2. The architecture is similar to T5Gemma and Gemma 3, enhanced with tied word embeddings and merged self- and cross-attention to save model parameters.

The example below demonstrates how to chat with the model with Pipeline or the AutoModel class, and from the command line.

import torch
from transformers import pipeline
generator = pipeline(
"image-text-to-text",
model="google/t5gemma-2-270m-270m",
dtype=torch.bfloat16,
device_map="auto",
)
generator(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",
text="<start_of_image> in this image, there is",
generate_kwargs={"do_sample": False, "max_new_tokens": 50},
)
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForSeq2SeqLM
processor = AutoProcessor.from_pretrained("google/t5gemma-2-270m-270m")
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/t5gemma-2-270m-270m",
device_map="auto",
dtype=torch.bfloat16,
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "<start_of_image> in this image, there is"
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
generation = model.generate(**model_inputs, max_new_tokens=20, do_sample=False)
print(processor.decode(generation[0]))

[[autodoc]] T5Gemma2Config

[[autodoc]] T5Gemma2TextConfig

[[autodoc]] T5Gemma2EncoderConfig

[[autodoc]] T5Gemma2DecoderConfig

[[autodoc]] T5Gemma2Model - forward

[[autodoc]] T5Gemma2ForConditionalGeneration - forward

[[autodoc]] T5Gemma2ForSequenceClassification - forward

[[autodoc]] T5Gemma2ForTokenClassification - forward