T5Gemma 2
This model was released on {release_date} and added to Hugging Face Transformers on 2025-12-01.
T5Gemma 2
Section titled “T5Gemma 2”T5Gemma 2 is a family of pretrained encoder-decoder large language models with strong multilingual, multimodal and long-context capability, available in 270M-270M, 1B-1B and 4B-4B parameters. Following T5Gemma, it is built via model adaptation (based on Gemma 3) using UL2. The architecture is similar to T5Gemma and Gemma 3, enhanced with tied word embeddings and merged self- and cross-attention to save model parameters.
The example below demonstrates how to chat with the model with Pipeline or the AutoModel class, and from the command line.
import torchfrom transformers import pipeline
generator = pipeline( "image-text-to-text", model="google/t5gemma-2-270m-270m", dtype=torch.bfloat16, device_map="auto",)
generator( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg", text="<start_of_image> in this image, there is", generate_kwargs={"do_sample": False, "max_new_tokens": 50},)import torchimport requestsfrom PIL import Imagefrom transformers import AutoProcessor, AutoModelForSeq2SeqLM
processor = AutoProcessor.from_pretrained("google/t5gemma-2-270m-270m")model = AutoModelForSeq2SeqLM.from_pretrained( "google/t5gemma-2-270m-270m", device_map="auto", dtype=torch.bfloat16,)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"image = Image.open(requests.get(url, stream=True).raw)prompt = "<start_of_image> in this image, there is"
model_inputs = processor(text=prompt, images=image, return_tensors="pt")generation = model.generate(**model_inputs, max_new_tokens=20, do_sample=False)print(processor.decode(generation[0]))T5Gemma2Config
Section titled “T5Gemma2Config”[[autodoc]] T5Gemma2Config
T5Gemma2TextConfig
Section titled “T5Gemma2TextConfig”[[autodoc]] T5Gemma2TextConfig
T5Gemma2EncoderConfig
Section titled “T5Gemma2EncoderConfig”[[autodoc]] T5Gemma2EncoderConfig
T5Gemma2DecoderConfig
Section titled “T5Gemma2DecoderConfig”[[autodoc]] T5Gemma2DecoderConfig
T5Gemma2Model
Section titled “T5Gemma2Model”[[autodoc]] T5Gemma2Model - forward
T5Gemma2ForConditionalGeneration
Section titled “T5Gemma2ForConditionalGeneration”[[autodoc]] T5Gemma2ForConditionalGeneration - forward
T5Gemma2ForSequenceClassification
Section titled “T5Gemma2ForSequenceClassification”[[autodoc]] T5Gemma2ForSequenceClassification - forward
T5Gemma2ForTokenClassification
Section titled “T5Gemma2ForTokenClassification”[[autodoc]] T5Gemma2ForTokenClassification - forward