SmolVLM
This model was released on 2025-02-20 and added to Hugging Face Transformers on 2025-02-20.
SmolVLM
Section titled “SmolVLM”
Overview
Section titled “Overview”SmolVLM2 (blog post) is an adaptation of the Idefics3 model with two main differences:
- It uses SmolLM2 for the text model.
- It supports multi-image and video inputs
Usage tips
Section titled “Usage tips”Input images are processed either by upsampling (if resizing is enabled) or at their original resolution. The resizing behavior depends on two parameters: do_resize and size.
Videos should not be upsampled.
If do_resize is set to True, the model resizes images so that the longest edge is 4*512 pixels by default.
The default resizing behavior can be customized by passing a dictionary to the size parameter. For example, {"longest_edge": 4 * 512} is the default, but you can change it to a different value if needed.
Here’s how to control resizing and set a custom size:
image_processor = SmolVLMImageProcessor(do_resize=True, size={"longest_edge": 2 * 512}, max_image_size=512)Additionally, the max_image_size parameter, which controls the size of each square patch the image is decomposed into, is set to 512 by default but can be adjusted as needed. After resizing (if applicable), the image processor decomposes the images into square patches based on the max_image_size parameter.
This model was contributed by orrzohar.
Usage example
Section titled “Usage example”Single Media inference
Section titled “Single Media inference”The model can accept both images and videos as input, but you should use only one of the modalities at a time. Here’s an example code for that.
import torchfrom transformers import AutoProcessor, AutoModelForImageTextToText
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")model = AutoModelForImageTextToText.from_pretrained( "HuggingFaceTB/SmolVLM2-256M-Video-Instruct", dtype=torch.bfloat16, device_map="auto")
conversation = [ { "role": "user", "content":[ {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"}, {"type": "text", "text": "Describe this image."} ] }]
inputs = processor.apply_chat_template( conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt",).to(model.device, dtype=torch.bfloat16)
output_ids = model.generate(**inputs, max_new_tokens=128)generated_texts = processor.batch_decode(output_ids, skip_special_tokens=True)print(generated_texts)
# Videoconversation = [ { "role": "user", "content": [ {"type": "video", "path": "/path/to/video.mp4"}, {"type": "text", "text": "Describe this video in detail"} ] },]
inputs = processor.apply_chat_template( conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt",).to(model.device, dtype=torch.bfloat16)
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)print(generated_texts[0])Batch Mixed Media Inference
Section titled “Batch Mixed Media Inference”The model can batch inputs composed of several images/videos and text. Here is an example.
import torchfrom transformers import AutoProcessor, AutoModelForImageTextToText
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")model = AutoModelForImageTextToText.from_pretrained( "HuggingFaceTB/SmolVLM2-256M-Video-Instruct", dtype=torch.bfloat16, device_map="auto")
# Conversation for the first imageconversation1 = [ { "role": "user", "content": [ {"type": "image", "path": "/path/to/image.jpg"}, {"type": "text", "text": "Describe this image."} ] }]
# Conversation with two imagesconversation2 = [ { "role": "user", "content": [ {"type": "image", "path": "/path/to/image.jpg"}, {"type": "image", "path": "/path/to/image.jpg"}, {"type": "text", "text": "What is written in the pictures?"} ] }]
# Conversation with pure textconversation3 = [ {"role": "user","content": "who are you?"}]
conversations = [conversation1, conversation2, conversation3]inputs = processor.apply_chat_template( conversations, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt",).to(model.device, dtype=torch.bfloat16)
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)print(generated_texts[0])SmolVLMConfig
Section titled “SmolVLMConfig”[[autodoc]] SmolVLMConfig
SmolVLMVisionConfig
Section titled “SmolVLMVisionConfig”[[autodoc]] SmolVLMVisionConfig
Idefics3VisionTransformer
Section titled “Idefics3VisionTransformer”[[autodoc]] SmolVLMVisionTransformer
SmolVLMModel
Section titled “SmolVLMModel”[[autodoc]] SmolVLMModel - forward
SmolVLMForConditionalGeneration
Section titled “SmolVLMForConditionalGeneration”[[autodoc]] SmolVLMForConditionalGeneration - forward
SmolVLMImageProcessor
Section titled “SmolVLMImageProcessor”[[autodoc]] SmolVLMImageProcessor - preprocess
SmolVLMImageProcessorFast
Section titled “SmolVLMImageProcessorFast”[[autodoc]] SmolVLMImageProcessorFast - preprocess
SmolVLMVideoProcessor
Section titled “SmolVLMVideoProcessor”[[autodoc]] SmolVLMVideoProcessor - preprocess
SmolVLMProcessor
Section titled “SmolVLMProcessor”[[autodoc]] SmolVLMProcessor - call