RoBERTa
This model was released on 2019-07-26 and added to Hugging Face Transformers on 2020-11-16.
RoBERTa
Section titled “RoBERTa”RoBERTa improves BERT with new pretraining objectives, demonstrating BERT was undertrained and training design is important. The pretraining objectives include dynamic masking, sentence packing, larger batches and a byte-level BPE tokenizer.
You can find all the original RoBERTa checkpoints under the Facebook AI organization.
The example below demonstrates how to predict the <mask> token with Pipeline, AutoModel, and from the command line.
import torchfrom transformers import pipeline
pipeline = pipeline( task="fill-mask", model="FacebookAI/roberta-base", dtype=torch.float16, device=0)pipeline("Plants create <mask> through a process known as photosynthesis.")import torchfrom transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained( "FacebookAI/roberta-base",)model = AutoModelForMaskedLM.from_pretrained( "FacebookAI/roberta-base", dtype=torch.float16, device_map="auto", attn_implementation="sdpa")inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to(model.device)
with torch.no_grad(): outputs = model(**inputs) predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]predicted_token_id = predictions[0, masked_index].argmax(dim=-1)predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")echo -e "Plants create <mask> through a process known as photosynthesis." | transformers run --task fill-mask --model FacebookAI/roberta-base --device 0- RoBERTa doesn’t have
token_type_idsso you don’t need to indicate which token belongs to which segment. Separate your segments with the separation tokentokenizer.sep_tokenor</s>.
RobertaConfig
Section titled “RobertaConfig”[[autodoc]] RobertaConfig
RobertaTokenizer
Section titled “RobertaTokenizer”[[autodoc]] RobertaTokenizer - get_special_tokens_mask - save_vocabulary
RobertaTokenizerFast
Section titled “RobertaTokenizerFast”[[autodoc]] RobertaTokenizerFast
RobertaModel
Section titled “RobertaModel”[[autodoc]] RobertaModel - forward
RobertaForCausalLM
Section titled “RobertaForCausalLM”[[autodoc]] RobertaForCausalLM - forward
RobertaForMaskedLM
Section titled “RobertaForMaskedLM”[[autodoc]] RobertaForMaskedLM - forward
RobertaForSequenceClassification
Section titled “RobertaForSequenceClassification”[[autodoc]] RobertaForSequenceClassification - forward
RobertaForMultipleChoice
Section titled “RobertaForMultipleChoice”[[autodoc]] RobertaForMultipleChoice - forward
RobertaForTokenClassification
Section titled “RobertaForTokenClassification”[[autodoc]] RobertaForTokenClassification - forward
RobertaForQuestionAnswering
Section titled “RobertaForQuestionAnswering”[[autodoc]] RobertaForQuestionAnswering - forward