Moonshine
This model was released on 2024-10-21 and added to Hugging Face Transformers on 2025-01-10.
Moonshine
Section titled “Moonshine”Moonshine is an encoder-decoder speech recognition model optimized for real-time transcription and recognizing voice command. Instead of using traditional absolute position embeddings, Moonshine uses Rotary Position Embedding (RoPE) to handle speech with varying lengths without using padding. This improves efficiency during inference, making it ideal for resource-constrained devices.
You can find all the original Moonshine checkpoints under the Useful Sensors organization.
The example below demonstrates how to transcribe speech into text with Pipeline or the AutoModel class.
import torchfrom transformers import pipeline
pipeline = pipeline( task="automatic-speech-recognition", model="UsefulSensors/moonshine-base", dtype=torch.float16, device=0)pipeline("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")# pip install datasetsimport torchfrom datasets import load_datasetfrom transformers import AutoProcessor, MoonshineForConditionalGeneration
processor = AutoProcessor.from_pretrained( "UsefulSensors/moonshine-base",)model = MoonshineForConditionalGeneration.from_pretrained( "UsefulSensors/moonshine-base", dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", split="validation")audio_sample = ds[0]["audio"]
input_features = processor( audio_sample["array"], sampling_rate=audio_sample["sampling_rate"], return_tensors="pt")input_features = input_features.to(model.device, dtype=torch.float16)
predicted_ids = model.generate(**input_features, cache_implementation="static")transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)transcription[0]MoonshineConfig
Section titled “MoonshineConfig”[[autodoc]] MoonshineConfig
MoonshineModel
Section titled “MoonshineModel”[[autodoc]] MoonshineModel - forward - _mask_input_features
MoonshineForConditionalGeneration
Section titled “MoonshineForConditionalGeneration”[[autodoc]] MoonshineForConditionalGeneration - forward - generate