Skip to content

ModernBERT Decoder

This model was released on 2024-12-18 and added to Hugging Face Transformers on 2025-07-15.

PyTorch FlashAttention SDPA

ModernBERT Decoder has the same architecture as ModernBERT but it is trained from scratch with a causal language modeling objective from the Ettin paper. This allows for using the same architecture to compare encoders and decoders. This model is the decoder architecture implementation of ModernBERT, designed for autoregressive text generation tasks.

ModernBERT Decoder uses sliding window attention and rotary positional embeddings for efficiency and to handle longer sequences.

You can find all the original ModernBERT Decoder checkpoints under the jhu-clsp collection.

Click on the ModernBERT Decoder models in the right sidebar for more examples of how to apply ModernBERT Decoder to different text generation tasks.

The example below demonstrates how to use ModernBERT Decoder for text generation with Pipeline, AutoModel (with and without quantization), and from the command line.

import torch
from transformers import pipeline
generator = pipeline(
task="text-generation",
model="jhu-clsp/ettin-decoder-17m",
dtype=torch.float16,
device=0
)
generator("The future of artificial intelligence is", max_length=50, num_return_sequences=1)
# For sequence classification
classifier = pipeline(
task="text-classification",
model="jhu-clsp/ettin-decoder-17m",
dtype=torch.float16,
device=0
)
classifier("This movie is really great!")
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-17m")
model = AutoModelForCausalLM.from_pretrained(
"jhu-clsp/ettin-decoder-17m",
dtype=torch.float16,
device_map="auto",
)
prompt = "The future of artificial intelligence is"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=50,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Generated text: {generated_text}")
# For sequence classification
from transformers import AutoModelForSequenceClassification
classifier_model = AutoModelForSequenceClassification.from_pretrained(
"jhu-clsp/ettin-decoder-17m",
dtype=torch.float16,
device_map="auto",
num_labels=2
)
text = "This movie is really great!"
inputs = tokenizer(text, return_tensors="pt").to(classifier_model.device)
with torch.no_grad():
outputs = classifier_model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1)
print(f"Predicted class: {predicted_class.item()}")
print(f"Prediction probabilities: {predictions}")
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
)
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-1b")
model = AutoModelForCausalLM.from_pretrained(
"jhu-clsp/ettin-decoder-1b",
dtype=torch.float16,
device_map="auto",
quantization_config=quantization_config
)
prompt = "The future of artificial intelligence is"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=50,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Generated text: {generated_text}")
Terminal window
echo "The future of artificial intelligence is" | transformers run --task text-generation --model jhu-clsp/ettin-decoder-17m --device 0

[[autodoc]] ModernBertDecoderConfig

[[autodoc]] ModernBertDecoderModel - forward

[[autodoc]] ModernBertDecoderForCausalLM - forward

ModernBertDecoderForSequenceClassification

Section titled “ModernBertDecoderForSequenceClassification”

[[autodoc]] ModernBertDecoderForSequenceClassification - forward