MobileNet V2
This model was released on 2018-01-13 and added to Hugging Face Transformers on 2022-11-14.
MobileNet V2
Section titled “MobileNet V2”MobileNet V2 improves performance on mobile devices with a more efficient architecture. It uses inverted residual blocks and linear bottlenecks to start with a smaller representation of the data, expands it for processing, and shrinks it again to reduce the number of computations. The model also removes non-linearities to maintain accuracy despite its simplified design. Like MobileNet V1, it uses depthwise separable convolutions for efficiency.
You can all the original MobileNet checkpoints under the Google organization.
The examples below demonstrate how to classify an image with Pipeline or the AutoModel class.
import torchfrom transformers import pipeline
pipeline = pipeline( task="image-classification", model="google/mobilenet_v2_1.4_224", dtype=torch.float16, device=0)pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")import torchimport requestsfrom PIL import Imagefrom transformers import AutoModelForImageClassification, AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained( "google/mobilenet_v2_1.4_224",)model = AutoModelForImageClassification.from_pretrained( "google/mobilenet_v2_1.4_224",)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"image = Image.open(requests.get(url, stream=True).raw)inputs = image_processor(image, return_tensors="pt")
with torch.no_grad(): logits = model(**inputs).logitspredicted_class_id = logits.argmax(dim=-1).item()
class_labels = model.config.id2labelpredicted_class_label = class_labels[predicted_class_id]print(f"The predicted class label is: {predicted_class_label}")-
Classification checkpoint names follow the pattern
mobilenet_v2_{depth_multiplier}_{resolution}, likemobilenet_v2_1.4_224.1.4is the depth multiplier and224is the image resolution. Segmentation checkpoint names follow the patterndeeplabv3_mobilenet_v2_{depth_multiplier}_{resolution}. -
While trained on images of a specific sizes, the model architecture works with images of different sizes (minimum 32x32). The
MobileNetV2ImageProcessorhandles the necessary preprocessing. -
MobileNet is pretrained on ImageNet-1k, a dataset with 1000 classes. However, the model actually predicts 1001 classes. The additional class is an extra “background” class (index 0).
-
The segmentation models use a DeepLabV3+ head which is often pretrained on datasets like PASCAL VOC.
-
The original TensorFlow checkpoints determines the padding amount at inference because it depends on the input image size. To use the native PyTorch padding behavior, set
tf_padding=FalseinMobileNetV2Config.from transformers import MobileNetV2Configconfig = MobileNetV2Config.from_pretrained("google/mobilenet_v2_1.4_224", tf_padding=True) -
The Transformers implementation does not support the following features.
- Uses global average pooling instead of the optional 7x7 average pooling with stride 2. For larger inputs, this gives a pooled output that is larger than a 1x1 pixel.
output_hidden_states=Truereturns all intermediate hidden states. It is not possible to extract the output from specific layers for other downstream purposes.- Does not include the quantized models from the original checkpoints because they include “FakeQuantization” operations to unquantize the weights.
- For segmentation models, the final convolution layer of the backbone is computed even though the DeepLabV3+ head doesn’t use it.
MobileNetV2Config
Section titled “MobileNetV2Config”[[autodoc]] MobileNetV2Config
MobileNetV2ImageProcessor
Section titled “MobileNetV2ImageProcessor”[[autodoc]] MobileNetV2ImageProcessor - preprocess - post_process_semantic_segmentation
MobileNetV2ImageProcessorFast
Section titled “MobileNetV2ImageProcessorFast”[[autodoc]] MobileNetV2ImageProcessorFast - preprocess - post_process_semantic_segmentation
MobileNetV2Model
Section titled “MobileNetV2Model”[[autodoc]] MobileNetV2Model - forward
MobileNetV2ForImageClassification
Section titled “MobileNetV2ForImageClassification”[[autodoc]] MobileNetV2ForImageClassification - forward
MobileNetV2ForSemanticSegmentation
Section titled “MobileNetV2ForSemanticSegmentation”[[autodoc]] MobileNetV2ForSemanticSegmentation - forward