Skip to content

HGNet-V2

This model was released on 2024-07-01 and added to Hugging Face Transformers on 2025-04-29.

PyTorch

HGNetV2 is a next-generation convolutional neural network (CNN) backbone built for optimal accuracy-latency tradeoff on NVIDIA GPUs. Building on the originalHGNet, HGNetV2 delivers high accuracy at fast inference speeds and performs strongly on tasks like image classification, object detection, and segmentation, making it a practical choice for GPU-based computer vision applications.

You can find all the original HGNet V2 models under the USTC organization.

The example below demonstrates how to classify an image with Pipeline or the AutoModel class.

import torch
from transformers import pipeline
pipeline = pipeline(
task="image-classification",
model="ustc-community/hgnet-v2",
dtype=torch.float16,
device=0
)
pipeline("http://images.cocodataset.org/val2017/000000039769.jpg")
import torch
import requests
from transformers import HGNetV2ForImageClassification, AutoImageProcessor
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
model = HGNetV2ForImageClassification.from_pretrained("ustc-community/hgnet-v2")
processor = AutoImageProcessor.from_pretrained("ustc-community/hgnet-v2")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")

[[autodoc]] HGNetV2Config

[[autodoc]] HGNetV2Backbone - forward

[[autodoc]] HGNetV2ForImageClassification - forward