Skip to content

FalconMamba

This model was released on 2024-10-07 and added to Hugging Face Transformers on 2024-08-12.

PyTorch

FalconMamba is a 7B large language model, available as pretrained and instruction-tuned variants, based on the Mamba. This model implements a pure Mamba design that focuses on computational efficiency while maintaining strong performance. FalconMamba is significantly faster at inference and requires substantially less memory for long sequence generation. The models are pretrained on a diverse 5.8T token dataset including RefinedWeb, technical content, code, and mathematical data.

You can find the official FalconMamba checkpoints in the FalconMamba 7B collection.

The examples below demonstrate how to generate text with Pipeline, AutoModel, and from the command line.

import torch
from transformers import pipeline
pipeline = pipeline(
"text-generation",
model="tiiuae/falcon-mamba-7b-instruct",
dtype=torch.bfloat16,
device=0
)
pipeline(
"Explain the difference between transformers and SSMs",
max_length=100,
do_sample=True,
temperature=0.7
)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-mamba-7b-instruct",
dtype=torch.bfloat16,
device_map="auto"
)
input_ids = tokenizer("Explain the difference between transformers and SSMs", return_tensors="pt").to(model.device)
output = model.generate(**input_ids, max_new_tokens=100, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
Terminal window
transformers chat tiiuae/falcon-mamba-7b-instruct --dtype auto --device 0

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses bitsandbytes to quantize the weights to 4-bits.

import torch
from transformers import AutoTokenizer, FalconMambaForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = FalconMambaForCausalLM.from_pretrained(
"tiiuae/falcon-mamba-7b",
dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
)
inputs = tokenizer("Explain the concept of state space models in simple terms", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

[[autodoc]] FalconMambaCache - update_conv_state - update_ssm_state - reset

[[autodoc]] FalconMambaConfig

[[autodoc]] FalconMambaModel - forward

[[autodoc]] FalconMambaForCausalLM - forward