Skip to content

Deformable DETR

This model was released on 2020-10-08 and added to Hugging Face Transformers on 2022-09-14.

PyTorch

Deformable DETR improves on the original DETR by using a deformable attention module. This mechanism selectively attends to a small set of key sampling points around a reference. It improves training speed and improves accuracy.

drawing

Deformable DETR architecture. Taken from the original paper.

You can find all the available Deformable DETR checkpoints under the SenseTime organization.

Click on the Deformable DETR models in the right sidebar for more examples of how to apply Deformable DETR to different object detection and segmentation tasks.

The example below demonstrates how to perform object detection with the Pipeline and the AutoModel class.

from transformers import pipeline
import torch
pipeline = pipeline(
"object-detection",
model="SenseTime/deformable-detr",
dtype=torch.float16,
device_map=0
)
pipeline("http://images.cocodataset.org/val2017/000000039769.jpg")
from transformers import AutoImageProcessor, AutoModelForObjectDetection
from PIL import Image
import requests
import torch
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr")
model = AutoModelForObjectDetection.from_pretrained("SenseTime/deformable-detr")
# prepare image for the model
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
for result in results:
for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
score, label = score.item(), label_id.item()
box = [round(i, 2) for i in box.tolist()]
print(f"{model.config.id2label[label]}: {score:.2f} {box}")
  • Refer to this set of notebooks for inference and fine-tuning DeformableDetrForObjectDetection on a custom dataset.

[[autodoc]] DeformableDetrImageProcessor - preprocess - post_process_object_detection

[[autodoc]] DeformableDetrImageProcessorFast - preprocess - post_process_object_detection

[[autodoc]] DeformableDetrConfig

[[autodoc]] DeformableDetrModel - forward

[[autodoc]] DeformableDetrForObjectDetection - forward