BioGPT
This model was released on 2022-10-19 and added to Hugging Face Transformers on 2022-12-05.
BioGPT
Section titled “BioGPT”BioGPT is a generative Transformer model based on GPT-2 and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.
You can find all the original BioGPT checkpoints under the Microsoft organization.
The example below demonstrates how to generate biomedical text with Pipeline, AutoModel, and also from the command line.
import torchfrom transformers import pipeline
generator = pipeline( task="text-generation", model="microsoft/biogpt", dtype=torch.float16, device=0,)result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]print(result)import torchfrom transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")model = AutoModelForCausalLM.from_pretrained( "microsoft/biogpt", dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
input_text = "Ibuprofen is best used for"inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad(): generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)print(output)echo -e "Ibuprofen is best used for" | transformers run --task text-generation --model microsoft/biogpt --device 0Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses bitsandbytes to only quantize the weights to 4-bit precision.
import torchfrom transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")model = AutoModelForCausalLM.from_pretrained( "microsoft/BioGPT-Large", quantization_config=bnb_config, dtype=torch.bfloat16, device_map="auto")
input_text = "Ibuprofen is best used for"inputs = tokenizer(input_text, return_tensors="pt").to(model.device)with torch.no_grad(): generated_ids = model.generate(**inputs, max_length=50)output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)print(output)-
Pad inputs on the right because BioGPT uses absolute position embeddings.
-
BioGPT can reuse previously computed key-value attention pairs. Access this feature with the past_key_values parameter in
forward.from transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained("microsoft/biogpt",attn_implementation="eager")
BioGptConfig
Section titled “BioGptConfig”[[autodoc]] BioGptConfig
BioGptTokenizer
Section titled “BioGptTokenizer”[[autodoc]] BioGptTokenizer - save_vocabulary
BioGptModel
Section titled “BioGptModel”[[autodoc]] BioGptModel - forward
BioGptForCausalLM
Section titled “BioGptForCausalLM”[[autodoc]] BioGptForCausalLM - forward
BioGptForTokenClassification
Section titled “BioGptForTokenClassification”[[autodoc]] BioGptForTokenClassification - forward
BioGptForSequenceClassification
Section titled “BioGptForSequenceClassification”[[autodoc]] BioGptForSequenceClassification - forward