Skip to content

BioGPT

This model was released on 2022-10-19 and added to Hugging Face Transformers on 2022-12-05.

PyTorch FlashAttention SDPA

BioGPT is a generative Transformer model based on GPT-2 and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.

You can find all the original BioGPT checkpoints under the Microsoft organization.

The example below demonstrates how to generate biomedical text with Pipeline, AutoModel, and also from the command line.

import torch
from transformers import pipeline
generator = pipeline(
task="text-generation",
model="microsoft/biogpt",
dtype=torch.float16,
device=0,
)
result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]
print(result)
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
Terminal window
echo -e "Ibuprofen is best used for" | transformers run --task text-generation --model microsoft/biogpt --device 0

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses bitsandbytes to only quantize the weights to 4-bit precision.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/BioGPT-Large",
quantization_config=bnb_config,
dtype=torch.bfloat16,
device_map="auto"
)
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
  • Pad inputs on the right because BioGPT uses absolute position embeddings.

  • BioGPT can reuse previously computed key-value attention pairs. Access this feature with the past_key_values parameter in forward.

    from transformers import AutoModelForCausalLM
    model = AutoModelForCausalLM.from_pretrained(
    "microsoft/biogpt",
    attn_implementation="eager"
    )

[[autodoc]] BioGptConfig

[[autodoc]] BioGptTokenizer - save_vocabulary

[[autodoc]] BioGptModel - forward

[[autodoc]] BioGptForCausalLM - forward

[[autodoc]] BioGptForTokenClassification - forward

[[autodoc]] BioGptForSequenceClassification - forward